Growth, productivity, and harvest quality of Sorghum (Sorghum Bicolor L.) as food and bioethanol raw material with various treatments

Authors

  • Nurul Rusdi Badan Riset dan Inovasi Nasional
  • Bambang Singgih Badan Riset dan Inovasi Nasional
  • M. Ulinuhayani Badan Riset dan Inovasi Nasional
  • Setia Permana Nurhidayat Badan Riset dan Inovasi Nasional
  • Budi Triono Badan Riset dan Inovasi Nasional

DOI:

https://doi.org/10.55324/ijoms.v4i4.1081

Keywords:

bioethanol, productivity, resources alternative foods, sorghum crops

Abstract

The purpose of this study was to investigate the different environmental factors that influence the growth, productivity, and quality results of harvest sorghum (Sorghum bicolor L.) as material food alternatives and materials raw bioethanol. The study consisted of 3 different treatments, where each treatment produced data to examine its effect on productivity, quality results. The experiment was designed using RAKF (factorial randomized block design) experimental design with one treatment factor, the usage of biofertilizer. The results show that liming at a dose of 2.5 tons/ha (Ca1) is sufficient to cultivate on acid soils with the red-yellow podzolic type and is more optimal if using a dosage of 5 tons per hectare depending on the results of soil analysis before planting. The best sugar quality is produced in the planting treatment during the dry season, with a total sugar value of about 14.5% and the highest reduction sugar of 2.4%. The addition of lime to acidic soil and the application of chemical and biofertileizers are crucial for optimal growth, enhancing both vegetative and generative development when applied in appropriate amounts. Furthermore, exploring the physiological mechanisms behind seasonal impacts on sugar content and assessing the economic viability of different planting seasons will provide valuable guidelines for farmers seeking to maximize food production and bioethanol raw materials.

References

Ajaj, H. A., Mohammed, Y. A., Alrubaya, A. A. M., & Addaheri, A. M. S. (2021). Effect of Planting Dates on the Growth, Yield and Quality of Three Cultivars of Sorghum (Sorghum bicolor L. Moench). IOP Conference Series: Earth and Environmental Science, 904(1). https://doi.org/10.1088/1755-1315/904/1/012019

Alrashidi, A. A., Alhaithloul, H. A. S., Soliman, M. H., Attia, M. S., Elsayed, S. M., Ali, M. M., Sadek, A. M., & Fakhr, M. A. (2022). Role of calcium and magnesium on dramatic physiological and anatomical responses in tomato plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(1). https://doi.org/10.15835/nbha50112614

Anunciação, P. C., Cardoso, L. de M., Gomes, J. V. P., Della Lucia, C. M., Carvalho, C. W. P., Galdeano, M. C., Queiroz, V. A. V., Alfenas, R. de C. G., Martino, H. S. D., & Pinheiro-Sant’Ana, H. M. (2017). Comparing sorghum and wheat whole grain breakfast cereals: Sensorial acceptance and bioactive compound content. Food Chemistry, 221. https://doi.org/10.1016/j.foodchem.2016.11.065

Bakrie, M. M., Anas, I., Sugiyanta, S., & Idris, K. (2010). APLIKASI PUPUK ANORGANIK DAN ORGANIK HAYATI PADA BUDIDAYA PADI SRI (System of Rice Intensification). Jurnal Ilmu Tanah Dan Lingkungan, 12(2). https://doi.org/10.29244/jitl.12.2.25-32

Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(1). https://doi.org/10.1186/1475-2859-13-66

Buni, A. (2014). Effects of Liming Acidic Soils on Improving Soil Properties and Yield of Haricot Bean. Journal of Environmental & Analytical Toxicology, 05(01). https://doi.org/10.4172/2161-0525.1000248

Fracasso, A., Trindade, L. M., & Amaducci, S. (2016). Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biology, 16(1). https://doi.org/10.1186/s12870-016-0800-x

Getachew, A., Temesgen, D., Tolessa, D., Ayalew, A., Geremew, T., & Chelot, Y. (2017). Effect of lime and phosphorus fertilizer on acid soil properties and barley grain yield at Bedi in Western Ethiopia. African Journal of Agricultural Research, 12(40). https://doi.org/10.5897/ajar2017.12562

Girard, A. L., & Awika, J. M. (2018). Sorghum polyphenols and other bioactive components as functional and health promoting food ingredients. Journal of Cereal Science, 84. https://doi.org/10.1016/j.jcs.2018.10.009

Herlina, N., & Prasetyorini, A. (2020). Effect of Climate Change on Planting Season and Productivity of Maize (Zea mays L.) in Malang Regency. Jurnal Ilmu Pertanian Indonesia, 25(1), 118–128. https://doi.org/10.18343/jipi.25.1.118

Karimuna, S. R., Wahab, A., Warda, & Baharudin. (2020). The effectiveness of fertilizing to increase growth and productivity sorghum on dry land and marginal in Southeast Sulawesi. IOP Conference Series: Earth and Environmental Science, 484(1). https://doi.org/10.1088/1755-1315/484/1/012073

Kartika, T. (2019). POTENSI HASIL JAGUNG MANIS (Zea Mays Saccharata Sturt.) HIBRIDA VARIETAS BONANZA F1 PADA JARAK TANAM BERBEDA. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 16(1). https://doi.org/10.31851/sainmatika.v16i1.2843

Kholová, J., Murugesan, T., Kaliamoorthy, S., Malayee, S., Baddam, R., Hammer, G. L., McLean, G., Deshpande, S., Hash, C. T., Craufurd, P. Q., & Vadez, V. (2014). Modelling the effect of plant water use traits on yield and stay-green expression in sorghum. Functional Plant Biology, 41(11). https://doi.org/10.1071/FP13355

Kolo, S. M. D., & Sine, Y. (2019). Produksi Bioetanol dari Ampas Sorgum Lahan Kering dengan Perlakuan Awal Microwave Irradiasi. Jurnal Saintek Lahan Kering, 2(2).

Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1). https://doi.org/10.1186/s40643-017-0137-9

Muflahi, A. A. M., & Basuaid, A. S. (2017). Effect of Nitrogen Fertilizer and Its Application Efficiency on Two Local Sorghum Cultivars Sorghum bicolor L. Moench. Journal of Agricultural Science, 9(4). https://doi.org/10.5539/jas.v9n4p236

Mullet, J., Morishige, D., McCormick, R., Truong, S., Hilley, J., McKinley, B., Anderson, R., Olson, S. N., & Rooney, W. (2014). Energy Sorghum-A genetic model for the design of C4 grass bioenergy crops. Journal of Experimental Botany, 65(13). https://doi.org/10.1093/jxb/eru229

Ortiz-Cruz, R. A., Ramírez-Wong, B., Ledesma-Osuna, A. I., Torres-Chávez, P. I., Sánchez-Machado, D. I., Montaño-Leyva, B., López-Cervantes, J., & Gutiérrez-Dorado, R. (2020). Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (Sorghum bicolor (L.) Moench) Bran. Plant Foods for Human Nutrition, 75(2). https://doi.org/10.1007/s11130-020-00810-6

Pathak, J., Ahmed, H., Kumari, N., Pandey, A., Rajneesh, & Sinha, R. P. (2020). Role of Calcium and Potassium in Amelioration of Environmental Stress in Plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress. Wiley Online Library. https://doi.org/10.1002/9781119552154.ch27

Regassa, T. H., & Wortmann, C. S. (2014). Sweet sorghum as a bioenergy crop: Literature review. Biomass and Bioenergy, 64. https://doi.org/10.1016/j.biombioe.2014.03.052

Rosales-Calderon, O., & Arantes, V. (2019). A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for Biofuels, 12(1). https://doi.org/10.1186/s13068-019-1529-1

Samanhudi, S., Yunus, A., Sakya, A. T., & Nugroho, N. (2021). Respon pertumbuhan sorgum manis (Sorghum bicolor L.) terhadap pemberian air yang berbeda. Jurnal Agercolere, 3(1). https://doi.org/10.37195/jac.v3i1.124

Silveira, T. C., Pegoraro, R. F., Kondo, M. K., Portugal, A. F., & Resende, Á. V. (2018). Sorghum yield after liming and combinations of phosphorus sources. Revista Brasileira de Engenharia Agricola e Ambiental, 22(4). https://doi.org/10.1590/1807-1929/agriambi.v22n4p243-248

Simnadis, T. G., Tapsell, L. C., & Beck, E. J. (2016). Effect of sorghum consumption on health outcomes: A systematic review. Nutrition Reviews, 74(11). https://doi.org/10.1093/nutrit/nuw036

Sriagtulaa, R., Kartib, P. D. M. H., Abdullahc, L., Supriyantod, & Astutie, D. A. (2016). Dynamics of Fiber Fraction in Generative Stage of M10-BMR Sorghum Mutant Lines. International Journal of Sciences: Basic and Applied Research (IJSBAR), 4531.

Talboys, P. J., Owen, D. W., Healey, J. R., Withers, P. J., & Jones, D. L. (2014). Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium. BMC Plant Biology, 14(1), 51. https://doi.org/10.1186/1471-2229-14-51

Tang, C., Li, S., Li, M., & Xie, G. H. (2018). Bioethanol potential of energy sorghum grown on marginal and arable lands. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00440

Tufa, T., & Kumbi, H. (2019). Influence of Seed Rate and Row Spacing on Growth and Yield of Bread Wheat in Chelia District of West Showa Zone, Ethiopia. Journal of Natural Sciences Research. https://doi.org/10.7176/jnsr/9-5-09

Wijaya, A. (2011). Pengaruh pemupukan dan pemberian kapur terhadap pertumbuhan dan daya hasil kacang tanah (Arachis hypogaea, L.). Institut Pertanian Bogor.

Windpassinger, S., Friedt, W., Frauen, M., Snowdon, R., & Wittkop, B. (2015). Designing adapted sorghum silage types with an enhanced energy density for biogas generation in temperate Europe. Biomass and Bioenergy, 81. https://doi.org/10.1016/j.biombioe.2015.08.005

Zubair, A. (2017). Sorgum tanaman multi manfaat. Universitas Padjajaran Press.

Downloads

Published

2025-01-22